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Abstract
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1. Introduction

The fourth assessment of the Inter Governmental Panel on Climate change

(IPCC) reports that3:

“Warming of the climate system is unequivocal, as is now ev-

ident from observations of increases in global average air and

ocean temperatures, widespread melting of snow and ice and ris-

ing global average sea level.”

Since the 1750s, atmospheric concentrations of carbon dioxide have risen

from about 280 to 379 parts per million (ppm) in 2005. This increase is

largely the result of large-scale supply chains to sustain modern economies

and lifestyles. Big contributors to greenhouse gases (GHG) emissions are

energy use to run industrial processes, generate electricity, transport goods,

and heat and cool residential and industrial structures. To mitigate the

effects of global warming, the IPCC estimates that emissions to be reduced

by 50% by 2050 and by 80% by 2080.

The premise of this paper is that by including GHG emission consider-

ations into common decisions that supply chain managers frequently make,

we can provide strategies and policies to reduce GHG emissions in the supply

chain.

In this paper, we focus on the choice of the appropriate freight mode to

use (like truck, rail, intermodal, etc.). The transportation sector is a sig-

nificant contributor to GHG emissions. In the United States, for example,

transportation accounts for 28% of all GHG emissions – and over half of

3see ipcc.ch
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these emissions are from movement of freight4. Decisions on the appropriate

freight mode to use (and implicitly the amount of inventory to hold) signif-

icantly impact the GHG emissions of a firm. In the United States, there

are no “hard” constraints on GHG emissions from transportation or from

warehousing. Firms that mitigate GHG emissions do so voluntarily. Current

reasons for carriers and firms who hire them to mitigate GHG include satis-

fying stakeholder expectation of being “green”; reducing fuel usage and the

associated cost; staying ahead of any potential climate change legislation;

and mitigating risk (mainly the availability and price of fuel) in the supply

chain.

The freight-choice problem – or the trade-off between inventory and trans-

portation has a long history in the logistics and supply chain literature (see

Baumal and Vinod, 1970; Tyworth, 1991 and the references within for a

comprehensive review). The key idea is that while slower modes of transport

necessitate higher cycle, safety, and in-transit cost, they are also cheaper to

use. The conventional wisdom is that as freight volume gets higher, firms

shift to slower and higher capacity modes. While research streams on sus-

tainability has grown significantly in the last decade ( see for example, Guide

and Van Wassenhove 2006a & b; and Boone et. al. 2012), only recently have

carbon constraints been part of generic-inventory logistics theoretic frame-

works (Bonney and Jaber, 2011; Benjaffar et. al., 2013). The impact of

GHG emissions have either been included as a cost (per unit of emission) or

as a constraint on firm operations. Hua et. al. (2011) provide an inventory

4From http://www.epa.gov/climatechange/ghgemissions/sources/transportation.html,
accessed September 15, 2014.
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model, based on the EOQ model, to compute order quantity under carbon

trading schemes. Hoen et. al. (2014) provide a freight-choice model in the

context of an order-up-to policy that includes a carbon emission cost per

unit as part of the cost function. They conclude that emission costs do not

have a significant impact on mode choice. However, a cap on emissions may

necessitate a significant increase in cost.

This paper adds to the growing research stream on carbon-mitigation

by providing a model for freight-choice with voluntary carbon emission con-

straints. Our model is unique in multiple ways. First, it uses a continuous-

review reorder-point stochastic inventory control context to compute the op-

timal lot size, reorder point, and mode choice for a given set of product

and freight mode characteristics. Second, the model uses a comprehensive

inventory-transportation cost framework, encompassing the cost of ordering;

holding cycle, safety and in-transit inventory; and finally the cost of trans-

portation. Third, we use emissions from transportation and warehousing as a

voluntary constraint – these emission levels are motivated by well-established

protocols such as the GHG protocol.

The paper is organized the following way. Section 2 introduces the nota-

tion and develops the cost model. In Section 3 are some observations on how

the emission constraint impacts the mode-choice decision. Section 4 gives

a numerical illustration which is based on our experience with a common

carrier. In Section 5 we present our conclusions and directions for future

research.
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2. Model Development

Notation

Decision Variables:

• Q = Order size from supplier. This will also determine the freight mode

that is used.

• r = Reorder quantity.

• m = Choice of freight mode.

Variables and constants:

• λ = Yearly demand

• u = Daily demand, a random variable with mean µd and standard

deviation σd

• m = index representing mode. Typical mode choices include Less-

than-Truckload (LTL), Truckload (TL), Intramodal (TOFC/COFC),

Railcar, and Air freight

• Lm = Lead time for mode m, a random variable with mean µm and

standard deviation σm

• Dltd = Lead time demand a random variable with mean µltd and stan-

dard deviation σltd

• w = Weight of the product

• S = Ordering cost
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• h = Inventory cost per unit of inventory per year

• ρ = Desired service level

• η(r) = Backorders per replenishment cycle

• π = cost of backordering one unit

• D = Distance the freight is moved

• TCm(Q,D) = Transportation cost for a given mode m moving a lot

size Q a distance D.

• M = Freight movement expressed in weight-distance. If Q units are

moved a distance D, then M = QwD

• fm,T = Efficiency of freight mode m expressed in weight-distance per

unit of fuel.

• eT = Emission factor of an unit of fuel

• eI = Emission factor per unit of product held in inventory.

• CB = The carbon emission budget for the year

Model Context

The context of our model is a firm that faces an annual demand λ. The

daily demand u is a random variable. The firm continuously monitors the

inventory levels at the warehouse and based on a chosen service level ρ, places

an order for Q units from the supplier when the inventory level falls below

a critical level r. The firm is also deciding on the choice of freight mode,
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i.e., how the lot-size will be shipped. The freight mode m has an uncertain

lead-time Lm, assumed to be a random variable. The firm also tracks its

emissions related to freight and warehousing operations. The firm has volun-

tarily imposed a constraint on emissions of GHG to a level CB. The overall

objective is to find the optimal levels of Q, r, and m that minimizes the total

cost of ordering, holding inventory, and transportation cost. The solution

must satisfy service and emission constraints, in addition to restrictions on

mode capacity.

Slower transport modes like inland waterways and ocean freight are cheaper

and likely have a lower transport-related GHG emissions, but also necessitate

higher cycle, safety, and in-transit stocks, making inventory costs (and the

corresponding carbon emissions from inventory) higher. On the other hand,

faster modes like LTL-shipping are quick, warrant lower stock (and lower

warehouse-related emissions) but are expensive, and on average, have higher

GHG emission levels during transport. Deciding on the appropriate mode to

use is a tradeoff between the uncertainty of demand and lead time, the cost

to transport, and GHG emission levels of transportation and warehousing.

Model

The key objective of the model is to find Q,R, and m to minimize the

expected total annual cost, ETAC:

ETAC(Q, r,m) = λ/Q ∗ S + [Q/2 + (r − µltd) + λ ∗ µm/d]h

+ η(r) ∗ λ/Q ∗ π

7



+ TCm(Q,D)λ/Q (1)

subject to:

η(r) ≤ Q(1 − ρ) (2)

M/fm,T eT ∗ λ/Q+ [Q/2 + (r − µltd)]eI ≤ CB (3)

Q ≤ Qm (4)

Q, r ≥ 0 (5)

The first term in equation(1) is the ordering cost. If Q units are ordered,

there are λ/Q replenishment cycles in a year, so the total cost is λ/Q ∗ S.

The second term of the cost function is the inventory holding costs. It is

made of three components. The first is the cycle inventory and is denoted

by Q/2. The second component is the safety stock – the stock held in excess

of the mean lead-time demand µltd to meet a given service level ρ. The third

component is the n-transit inventory – the average stock in transit over the

course of the year. Since the total demand is λ, and µm/d is the average

lead-time in years, the in transit inventory is simply λ ∗ µm/d. The three

components are multiplied by h, the cost of holding an unit for a year. The

third term in the cost function is the total backorder cost. η(r) is the total

number of backorders per replenishment cycle, with each unit backordered

costing π. The fourth term is the cost of transportation cost for a given

distance and lot size.
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The Constraints

Equation (2) is the service level constraint. If ρ is the level of service that

is desired, then the planned shortage per replenishment cycle is Q(1−ρ). For

a given r, the expected shortage is η(r). Equation (3) is the constraint on the

total carbon emissions per year. As the ensuing section will show, the total

emissions is the sum of the emissions from transportation, given a type of fuel

added to the emissions incurred when the product is held in inventory. CB is

the planned or budgeted level of emissions. Equation (4) is the constraint on

freight mode capacity, and Equation (5) are the non-negativity constraints

on Q and r.

2.1. Computing η(r)

For a given reorder point r, a freight mode m, and lead-time demand

Dltd,

η(r) =

∫ ∞
r

(x− r)Dltd(x)dx (6)

Managers often estimate the Dltd from empirical data by observing de-

mand over multiple replenishment periods. Statistically, if mean and stan-

dard deviation deviation of both demand and lead-time are known, µltd =

µmµd; and σltd =
√
µLσ2

d + µ2
dσ

2
L. The shape of lead-time demand is typi-

cally assumed to be normal for fast moving consumer goods (Tyworth and

O’Neill, 1999). Researchers use the Gamma distribution for medium to slow

moving goods or when lead-times have a long tail. This is often true when

using slower modes of transport – chances that shipments are delayed during

transit are higher and therefore can result in lead-time demand distributions

with longer tails. The Poisson distribution is often used for slow moving
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items. Table 1 shows how η(r) can be computed for different stochastic envi-

ronments. The lead-time demand (Dltd) can take any of the three forms and

the corresponding characteristics of the pdf and computational formulas for

η(r) are available in the Table (see Boone and Ganeshan, 2001; Silver and

Pyke, 1998; Tyworth and Ganeshan, 2001).

Table 1: Table: Calculating η(r) for different Stochastic Environments

Demand Normal Gamma Poisson

pdf g(x) = 1
σ
√

2π
e

−(x−µ)2

2σ2 γ(α, β) = xα−1e−x/β

βα−1Γ(α)
, α, β ≥

0
P (x = k) = eλx(λx)k/k!, x ≥ 0

Mean µ αβ λ
Standard
Deviation

σ αβ2 λ

η(r) [f(z)− z(1−F (z))]σ αβ(1−G1(r)− r(1−G2(r)) λ(1 − E1(r − 1) − r(1 − E1(r))

Notes f(.) and F (.) are the
pdf and cdf of the
standard Normal dis-
tribution. z = (r −
µ)/σ

G1(.) and G2(.) are the cdfs
of γ(α, β) and γ(α+1, β), re-
spectively

E1(.) is the cmf of P (.)

2.2. Calculating Carbon Emissions

For the purposes of this paper, the total emissions are the sum of the emis-

sions from the burning of fuel by thevehicles used for transporting freight;

and the emissions from warehousing activities. The emissions are typically

reported as carbon -di-oxide equivalents (CO2e) in weight units (lbs., Kgs.,

tones, etc). While there is not one universal standard to calculate emissions,

most are based on the Green House Gas (GHG) Protocol. The GHG Pro-

tocol is a common approach to emissions reporting developed by the World
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Resources Institute (WRI) and the World Business Council for Sustainable

Development (WBCSD).

Emission of Freight

The most direct method to calculate emissions from freight transport is

to measure the fuel that was consumed and multiply it by the emission factor

for that particular kind of fuel. If direct fuel usage is unavailable, indirect

approaches are used to estimate fuel use. These include estimating fuel use

from fuel cost (by using average cost of unit of fuel); or from statistics that

most freight operators log – distance and load carried, and then using them

in combination with efficiency measures that estimate fuel use from this data.

In this paper we assume that the shipper logs distance and load data; and

we estimate fuel use using efficiency measures5. Once fuel use is known, the

emissions can be computed by using the appropriate emission factor for that

fuel. Fuel efficiency measures can vary significantly depending on the product

being hauled, the equipment hauling it, the geographical location, and load

(percent empty and back hauls). In our experience, firms use averages, by

mode, over all shipments made in preceding months or years. Table 2 gives

average values of efficiency measures for common freight mode-types; and

emission factors for common fuels (See IFC International, 2009; EIA, 2014).

It is common among shippers to report freight movement in weight-

distance measure (example tonne-km or ton-mile). If D is the distance, with

a chosen lot size Q, the movement M = QDw is the weight-distance statistic

per replenishment cycle. fm,T is the efficiency of mode m, given the type of

5If fuel usage is available, this step can be bypassed
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Table 2: Table: Efficiency and Emission Factors for Common Freight Modes

Efficiency Emission Factors
Rail Ton-miles/gallon Range Fuel Kg CO2/gallon
Double-Stack 226-512 Diesel fuel 10.15
Box Car 406-469 Kerosene/ Jet fuel 9.57
TOFC 273 Aviation Gasoline 8.32

Biodiesel (B2) 9.94
Truck Motor Gasoline 8.91
Dry Van 82-110
Flatbed 112-133
Container 68-100

Barge 576
Ocean Container 575-1043

fuel T used. It is usually expressed in weight-distance per unit of fuel (for

example, tonne-km/liter or ton-mile/gallon). M/fm,T simply computes the

total fuel usage per replenishment cycle. The fuel consumption per replen-

ishment cycle is therefore M/fm,T eT . Since there are λ/Q cycles, the yearly

emissions related to freight movement is M/fm,T eT ∗ λ/Q.

Carbon Emissions of Inventory

The inventory that is delivered from the supplier is assumed to be ware-

housed. We have assumed that this warehouse is of sufficient size to accom-

modate inventory from any of the freight modes under consideration. We

also assume that the emissions related to inventory is proportional to the

energy use – direct or indirect – to maintain the warehouse. This would

include electricity, climate control, and moving operations such as fork lifts

within the warehouse. We have assessed an emission factor per unit of inven-

tory – as the inventory increases, energy related to maintaining and servicing
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it also raises proportionally. For many firms, the emissions resulting from

transportation operations far outweighs the emissions from warehousing –

unless significant energy is expended on warehousing (for example, a large

proportion of freezers and special handling circumstances), this component

typically has a small impact on mode choice.

The choice of Q and r determines the average inventory in the warehouse.

An emission factor eI is applied to each unit of cycle inventory (Q/2) and

the safety stock (r − µltd) to compute the emissions related to inventory:

[Q/2 + (r − µltd)]eI .

2.3. Transport Cost

Freight cost are a function of the mode, class of product, distance, weight,

and volume. In this paper, we model transportation as a function of the lot

size Q, the weight w, and distance d. For less-than-truckload, rates per unit

weight of the product decrease as the total weight that is shipped increases.

We model the rate (in $/cwt) as R = m+nln(Qw) (see Arcelus and Rowcroft,

1991). The cost of LTL shipments is then R(in$/cwt)∗Qw(incwt). For truck

load, carload, and containerized freight, the rates are typically quoted as full-

loads (rates to ship Qm) between origin and destination. Intermodal rates

are tailored, and are usually a function of the weight, the equipment being

used (TOFC/Double Stack, etc.), the origin and destination. Our model is

flexible to handle any freight cost scheme as long as it depends on weight

and distance traveled.
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Solution procedure

Equation (1) is discontinuous in m as each mode has it’s own restrictions

on Q and a transport rate and carbon-related efficiency that is idiosyncratic

to the mode. For a given m, however, Equation (1) is continuous but non-

linear in Q, and r – Equation (1) can therefore be solved using well-known

non-linear optimization methods such as Newton’s or conjugate gradient al-

gorithms. The typical procedure to solve for m to compute the optimal Q,

r, and ETAC for each m and choose the mode with the least cost. Since at

any given level of λ, only a subset of modes are usually considered (For ex-

ample, for small volumes, the choices are typically LTL , TL, or inter modal.

As volumes grow, the choices shift towards modes with a larger capacity

like rail and waterways), the solution procedure is often computationally less

intensive than an entire grid search.

3. Observations on how m impacts carbon emissions

A1. For a given mode m, the emission from transportation alone are inde-

pendent of Q and r.

A2. For a given mode m, the emissions due to warehousing increases linearly

with Q and r.

A3. The practical impact of the carbon budget (CB) constraint is that it

may force planners to use a mode with a lower carbon emission (or

invest in efficiency improvements) even though it may not be the lowest

cost option.
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A1. The emissions due to transportation QDw/fm,T eT ∗ λ/Q can be

rewritten as λDwfm,T eT . An increase in Q increases the movement M per

shipment, but there are fewer shipments to be made, balancing out the total

emissions. For a given mode, the choice of equipment and the fuel that powers

it determines fm,T and eT . The annual movement of freight in weight-distance

determines the emissions due to transportation. For an annual demand λ and

a fixed shipping lane distance d, a change is emissions from transportation

for a given mode would require either improving the efficiency of the current

equipment or changing the fuel used. Examples include skirts on trucks to

improve fuel efficiency; or using electric or hybrid locomotives to power trains

with significantly increased efficiency.

A2. For any given mode m, increasing lot size Q increases the cycle stock

(Q/2) proportionally. As r, increases, so does the safety stock which the stock

held in excess of the lead-time demand. So as lot size increases, so does the

emissions due to the increased inventory in the warehouse. As more safety

stock is held ( for a higher level of service), the level of emissions increase.

The practical impact is that when using slower modes (with more uncertain

lead-times), the carbon emissions from inventory will increase. This will have

to be offset potentially with more efficiency in carrying larger loads.

A3. For illustrative purposes, lets assume that there are two modes, 1

and 2. Let Q∗1, r
∗
1, Q

∗
2, r
∗
2 be the optimal lot size and reorder point for each

mode when the carbon constraint is relaxed. Say that ETAC(Q∗1, r
∗
1, 1) ≥

ETAC(Q∗2, r
∗
2), i.e., mode 1 is the more expensive option. Let F 1

e , I
1
e , F

2
e , I

2
e
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are the emissions due to freight and inventory of each of the modes respec-

tively. Let F 1
e + I1

e ≤ CB ≤ F 2
e + I2

e . In this case, although mode 1 is more

expensive, it is the mode that satisfies the carbon emission constraint, and

hence the optimal choice for Equation (1). The planners, can plan to bridge

the carbon gap F 2
e − F 1

e + I2
e − I1

e by either increasing efficiency or changing

fuel or by operational efficiencies to retain the cheaper mode in the longer

term or move to the more expensive mode but use different mean such as

renegotiating rates to bring the cost down. Over long distances 1000 miles

or above such situations are rare – modes that can carry more load like rail,

barge or intermodal are typically cheaper and have lower carbon emissions

than faster modes (a win-win situation!). However for shorter distances of

500 miles or lower, such situations can be quite common. For example truck-

load quantities (TL) are often quoted lower prices then COFC for the same

load for the distance. This is simply because it is easier to load a TL along

a shipping lane. However, COFCs have significantly lower carbon emissions

since they are part of a train and hence transported with higher efficiencies.

In such cases, the planner will have use the intermodal to satisfy the con-

straint or make improvements to the TL fleet to bridge the gap between TL

and COFC.

4. Numerical Illustration & Discussion

Consider a firm selling the product that costs $30 and weighs 2 lbs. The

annual demand is 100,000 units and daily demand is uncertain with a mean

µd = λ/d of 273.97 units and a standard deviation σd of 50 units. Other

relevant input parameters to the model are given in Table 3. The supplier
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is at a 500 mile distance and four choices for freight mode are available –

less-than-truckload (LTL), truckload (TL), intramodal option of trailer-on-

flat-car (TOFC), and rail carloads. Table 3 also gives the rates, lead-time

characteristics, capacity, and fuel efficiency of these mode choices. In this

example, the LTL rates are quoted per cwt and is given by 67−6ln(Qw) – so

as the weight shipped increases, the rate decreases. This is multiplied by the

weight in cwt Qw to compute the cost of shipping each replenishment cycle.

For TL, TOFC, and Carloads, the shipper has quoted per shipment rate6–

for ease of exposition, we assume that the firm will use the entire capacity of

the mode when used. We have also chosen the lead-time demand distribution

as a Gamma random variable.

The firm has allocated a voluntary budget of 10000 Kg. of CO2 for yearly

operations. Emissions are measured for both transportation and warehous-

ing. LTL, for example, using diesel fuel can on average haul 100 tons a mile

with one gallon of fuel. One gallon of diesel fuel equates to about 10.21 Kg of

CO2. Warehousing each unit accounts for 0.01 Kg CO2. For LTL, therefore,

most of the GHG emissions are from transportation. For Carloads, on the

other hand, 90000 lbs. are shipped at a time with a fuel efficiency of 500 ton-

mile per gallon. When combined with the relatively longer lead-times, the

emissions from warehousing for carloads can be significantly higher than that

of LTL. LTL and TL have similar emission levels, but TL is faster and less

expensive. TL and TOFC have similar capacities; TOFC is slower but also

has significantly less emissions. TOFC and Carloads have similar emission

6Irresective of how much is shipped a constant rate is charged. The model is flexible
however to incorporate a tiered shipping rate if shippers do offer the option
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Table 3: Input Parameters

Product Characteristics

Expected annual demand λ 100000 per year
Number of days in a year d 365
Mean demand per day µd 273.97 items
Std Dev. Of Demand per day σd 50 items
Cost per item C $30 per item
Weight per item w 2 lb. per item
Emissions from inventory eI 0.01 per item
Cost of placing an order S $500 per order
Inventory carrying charge h $0.15 per $ per year
Backorder cost π $10 per unit
Service Level ρ 95%
Carbon Cap CB 10000 KgCO2 per year

Mode Characteristics

Name (m) LTL TL TOFC Carload
Rate (TCm(Q,D), per shipment) 67 − 6ln(Q) ∗Qw $3031 $2500 $1750
Mean Lead time (µm, days) 6 3 7 10
Distance (D, in miles) 500 500 500 500
Standard deviation (σm,days) 0.6 0.3 0.7 1
Capacity (Qm, lbs.) 40000 40000 40000 90000
Fuel Efficiency (fm,T , ton-mile/gallon) 100 100 400 500
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levels but carloads are cheaper and carry significantly more product.

Table 4 gives the results of the optimization model. In this case, LTL is

the mode that minimizes cost, given the constraints on service (95% avail-

ability), mode capacity (40000 lbs.), and GHG emissions (capped at 10000

Kg of CO2). The firm optimally would order 8227.53 units (to be shipped by

LTL) when the inventory goes below 2028.06 units. The transport costs are

significant (almost 50% of total costs) and 98.8% of the emissions are from

transportation.

Figure 1 shows how the mode choice varies with volume. Figure 1a shows

the optimal cost as freight volume increase but without the carbon constraint

(it is the minimization of (1) without constraint (3)). In the unconstrained

problem, when λ = 100000, LTL is the cheapest mode. When 20000 ≤ λ ≤

500000, TOFC is the cheapest mode. When λ ≥ 600000, Carload is the

cheapest. When CB = 10000 and λ = 100000, LTL is still the choice as the

total GHG emission is less than 10000. However if CB = 5000, this firm will

have to move away from LTL, the cheapest mode and choose TOFC – an

example where the carbon constraint impacts mode choice. Alternatively,

we know the total CO2 emissions is 5166.42 Kg – so the firm can undertake

efforts to improve efficiency or switch fuels to get under the carbon cap.

TOFC costs $9422 more than LTL so if the improvements to LTL shipments

(such as skirts on trucks, installing battery packs, etc.) cost less than this

price premium, it may be a worthwhile experiment.
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Table 4: Results of Optimization

Derived Elements
Expected demand during lead time µltd 1643.83 units
Expected backorders η(r) 3.57 per replenishment cycle
Total number of trips λ/Q 12.15 per year
Ship weight Qw 16455.06 lbs per replenishment cycle
Cost of shipping TCm(Q,D) $2124.11 per replenishment cycle
Average Inventory Q/2 + r 6141.83 in warehouse + in transit

Decisions
reorder point r 2028.06 units
order quantity Q 8227.53 units
Mode m LTL

Costs
ordering Sλ/Q $6077.15 per year
Inventory Carrying (Q/2 + r)h $20240.99 per year
Backorder Costs η(r)πλ/Q $434.80 per year
Transport Costs TCm(Q,D)λ/Q $25817.10 per year
Expected total annual cost ETAC(Q, r,m) $52570.05 per year

Carbon Computations
Transportation M/fm,T eT ∗ λ/Q 5105 Co2 Kg per year
Inventory Q/2 + (r − µltd)eI 61.41 Co2 Kg per year
Total 5166.41 Co2 Kg per year
Budget CB 10000 Co2 Kg per year
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Figure 1: How the Optimal Solution Varies with Volume

5. Summary & Conclusion

The clarion call for action against climate change has many firms reexam-

ining traditional supply chain decisions under this new lens of GHG emission

mitigation. In this paper, we provided a model that helps planners choose the

appropriate freight mode, when voluntary carbon constraints are in place.

Our model uses a continuous-review reorder-point stochastic inventory

control context to compute the optimal lot size, reorder point, and mode

choice for a given set of product and freight mode characteristics. Our model

assumes a voluntary emissions constraint on total emissions from transporta-

tion and warehousing activities. The decisions are made comprehensive

inventory-transportation cost framework that includes all relevant costs of

the order management cycle - ordering; holding cycle, safety and in-transit
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inventory; and finally the cost of transportation. Our model is flexible to ac-

commodate a wide variety of stochastic environments, product, and freight

mode characteristics.

The key finding, other than the methodology to evaluate mode-choice,

of the paper is that firms with voluntary constraints on emissions may be

forced to choose modes of freight that do not have the lowest overall cost

(because they violate carbon constraints). This either forces the firm to

spend more on a mode with lower emissions or invest in trying to lower

the emissions of the lowest priced mode. There are multiple strategies for

improving efficiency (the fm,T ) – better designed vehicles that use less fuel,

optimizing transport network, and by efficient load planning that increases

weight and cube utilization and reduces number of trips. A second strategy

is to switch fuels – moving to hybrid vehicles or those that run on bio diesel

also reduce the eT . A third strategy – to reduce the warehousing emissions

(eI) is to build energy efficient warehouses that run on renewable fuel such

as solar; and by making improvements that improve the energy efficiency of

these buildings. These three strategies can have a significant impact on the

freight and warehousing emissions. Fourth, firms can also gain by lobbying

for emission cap legislation – any savings below the cap can then be ”traded”

for revenue.

Finally, further research can focus on the following questions:

• When multiple sources are used often across different parts of the globe,

how can a firm manage emissions by managing these multiple modes

of supply?

• How will ”cap and trade” mechanism impact mode choice and ware-
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housing?

• How does the differentiated cost of carbon emissions in different coun-

tries play a part in managing freight in the supply chain?
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