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a b s t r a c t

Forecasts have traditionally served as the basis for planning and executing supply chain
activities. Forecasts drive supply chain decisions, and theyhavebecome critically important
due to increasing customer expectations, shortening lead times, and the need to manage
scarce resources. Over the last ten years, advances in technology and data collection
systems have resulted in the generation of huge volumes of data on awide variety of topics
and at great speed. This paper reviews the impact that this explosion of data is having on
product forecasting and how it is improving it. While much of this review will focus on
time series data, we will also explore how such data can be used to obtain insights into
consumer behavior, and the impact of such data on organizational forecasting.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, forecasts have served as the basis for plan-
ning and executing supply chain activities such as sourcing,
making, and distributing products and services to cus-
tomers. Over the years, trends such as the globalization of
supply chains, the explosion of product variety, the short-
ening of product life cycles and increasingly competitive
markets have made forecasting more complex, yet its role
more critical.

Digital technologies such as advanced Point-of-Sale
(POS) systems, the ‘‘Internet of Things" (IoT), user-
generated content from social media, and cloud computing
have enabled firms to collect vast amounts of data in real-
time. We use the term ‘‘big data’’ to refer to data sets
that are large (large‘‘volume’’); collected in near real-time
(high ‘‘velocity’’); and present in a myriad of unstructured
forms (great ‘‘variety’’). The vast amounts of data that are
collected and analyzed in near real-time have the poten-
tial to improve our understanding of customer behavior,
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improve demand prediction and better execute supply
chain management. The intent of this paper is to provide a
review of theway inwhich this explosion of data is impact-
ing forecasting. For the purposes of this review, we focus
on ‘‘consumer analytics’’ from a forecasting perspective,
encompassing a set of data-driven techniques that provide
insights into consumer buying behaviors. The better a firm
understands its customers’ buying behaviors, the more
accurate its demand forecasts will be, which in turn helps
it to plan and execute supply chain operations more effi-
ciently. The context of this review will be that of retailing,
and we focus specifically on time series data. However,
the ideas described (new data streams, personalization,
new variables in forecasting, etc.) are not limited to the
customer side of the supply chain, but can also be extended
to inter- and intra-company interfaces.

This paper is organized as follows. Section 2 offers an
overview of the sources from which vast quantities and
new types of data are becoming available. Section 3 dis-
cusses existing research and potential future opportunities
in consumer analytics, specifically demand forecasting, us-
ing the data from these new sources. Section 4 then pro-
vides an overview of the challenges of integrating big data
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into the sales and operations planning process, and finally,
Section 5 presents a summary and our major conclusions.

2. Sources of big data

For the purpose of exposition, we identify a three-stage
path that is followed by a customer when making a pur-
chase. In the first stage, the customer realizes their need
for the product and gathers information about the product.
In the second stage, the customer interacts with the firm
to gather information, and processes it in order to make
a purchase decision. Then, in the third and final stage, the
customer makes a purchase. In the ensuing discussion, we
identify new sources of data that are now available on each
of these stages, after which Section 3 reviews the literature
and identifies opportunities for research in each of these
stages of the customer decision journey.

2.1. Point-of-sale data

Traditionally, POS systems have been used to collect
sales data which are then used as a baseline for forecasting
future demand. Gone are the days of independent ‘‘cash
registers’’ and ‘‘credit card’’ readers: POS systems today
provide a so-called ‘‘frictionless’’ checkout experience for
the customer and a connected data gathering system for
the merchant. Self-checkout and minimally-assisted POS
kiosks reduce lines and increase the checkout speed. POS
devices are now moving to mobile devices (either NFC-
based payments or hardware-assisted such as Square1),
which is enabling a wider array of retailers to engage with
their customers in multiple ways. For example, a customer
in an Apple, Inc. retail store can seek help from any re-
tail staff member, and checkout right next to the product
using ApplePay, Apple’s payment app on a mobile device
or a watch. Interestingly, even the POS device is simply a
specialized iPhone. In the most extreme case, Amazon Go2
promises ‘‘No Lines. No Checkout" — payment is handled
by the Amazon Go App on the customer’s phone and sen-
sors detect the contents of the shopping cart. Finally, POS
systems are integrated across multiple selling channels,
making it possible to blur the differences between the
physical and Internet stores.

The advantage of suchmodern systems is that they now
connect the customer (via software applications or through
loyalty initiatives) and the firm’s customer relationship
management (CRM) systemdirectly. Vast amounts of gran-
ular data indexed by customer are now readily available.3
Such data include demographic profiles, order histories,
loyalty card information, coupon redemption rates, etc. A
second advantage is that modern POS systems are also
connected to the inventory and warehouse systems, giving

1 See squareup.com.
2 See https://www.amazon.com/b?node=16008589011.
3 For example, Target, a large US retailer, uses what they call a ‘‘Guest

ID’’ to track individual customers. This ID is linked to the customer’s
browsing and purchase behavior, as well as to their demographic infor-
mation. See: http://www.nytimes.com/2012/02/19/magazine/shopping-
habits.html?pagewanted=1&_r=1&hp. Also see Feng and Shanthikumar
(2018) for examples of ways in which such real time data can be used
to build forecasting models.

both the retail worker and the customer access to product
availability information and the ability to purchase in the
broader network of physical and virtual stores. While this
may make it difficult to forecast the demand at any partic-
ular store, ‘‘system-wide" service levels will improve.

2.2. In-store path data

New in-store technologies are blurring the differences
between brick-and-mortar and online browsing and pur-
chasing experiences. Data on customers’ browsing (‘‘path
data’’) and purchase (intent to buy by adding to cart, aban-
doning the cart, etc.) behaviors that were once available
only to online retailers are now being integrated into phys-
ical stores. Beacons that connect to customer smartphones
via bluetooth technology identify when a customer has
entered the store. For example, Macy’s Shopkick App is
an example of one such proximity-based engagement. It
is triggered by beacons, and when combined with online
browsing experience and the customer’s position in the
store, the store is able to engage customers by pushing con-
tent, providing ‘‘offers’’, and awarding prizes.4 Kroger, one
of the largest grocers in the USA, is deploying digital shelf-
edges, where personalized information, including pricing,
can be triggered as a customer walks by.5 Retailers such as
Marks and Spencer are experimenting with ‘Virtual Rails’,
where the store’s entire catalog is displayed electroni-
cally on large TV screens. They play related content, and
also, as eCommerce customers are accustomed to, suggest
additions to the outfit when a customer scans a chosen
item. Augmented reality applications are used for virtual
dressing rooms,6 where customers can ‘try on’ different
products and sizes. Traffic counters, infrared sensors and
video cameras can now track customer traffic and paths
through the store (Section 3.2 explores research in this
area). They are used most commonly to reduce checkout
lines and schedule and deploy the workforce.

2.3. User-generated content

User-generated content (UGC) commonly refers to data
that is created by unpaid contributors. In our context, it can
be internet searches such as aGoogle search,which is avail-
able only on an aggregated basis; or it can refer to uploaded
Facebook posts, pictures, videos, testimonials, tweets, blog
posts, etc.,where the identity of the contributor is explicitly
available.

UGC has become a critical factor in the product dis-
covery, research, and buy phases of consumer activity.
Increasingly, consumers are discovering new products and
trends online, trusting andusing online reviews and ratings

4 See http://time.com/money/3432693/macys-shopkick-ibeacon/.
5 See for example https://www.wsj.com/articles/at-kroger-technolog

y-is-changing-the-grocery-store-shopping-experience-1487646362, ac-
cessed December 7, 2017. See also the related YouTube video: https:
//www.youtube.com/watch?v=w2vvcz-fki4, accessed December 7, 2017.
6 Gap Inc., is experimenting with the DressingRoom by Gap

augmented reality-based virtual dressing room. See https://adressed.
gapinc.com/blog/gap-ces-announcement-2017-dressingroom-app,
accessed July 20, 2017.
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of products and services from peers, and engaging more
with brands in the presence of UGC.

Firms are taking ‘‘digital media" strategies that make
use of UGC — search, social media, mobile, and email mar-
keting — seriously. According to one estimate,7 the digital
marketing ‘spend’ for US companies will be around $120
billion by 2021, representing 46% of all marketing expen-
ditures. Firms are spending significant sums of money to
position themselves in search engine searches; and are
investing in exploring how best to use social media plat-
forms in conjunction with their most valued consumers
(fans, influencers, etc.) to ‘spread the word’, not only to
inform but to persuade potential consumers. There are
several case studies in the literature on such efforts that
have been successful (for example see Goh, Heng, & Lin,
2013 and Kumar, Bhaskaran, Mirchandani, & Shah, 2013);
however, many of these studies do not focus on SKU-level
forecasting, creating a need for research in this area.

3. Opportunities for consumer analytics and forecasting

This section discusses existing and potential advances
in consumer analytics and demand forecasting that are
achieved using the data collected through new sources.

3.1. Point-of-sales data

The data used most often in time series based fore-
casting are historical data on sales. The obvious attraction
of such data is that they are available readily from the
most rudimentary of point-of-sales systems. Time series
methods are typically used for estimating patterns in past
sales data, which are then extrapolated for forecasting
future demand. One of the key issues with this method of
forecasting is the bias that results from demand censoring:
firms do not record information on demand during stock-
out, meaning that information on the demand in excess of
inventory carried is simply lost. Such demand censoring
leads to forecasts which are biased downwards, resulting
in poorer inventory decisions, which further increase the
extent of censoring. The problem is exacerbated further
when the firm is selling multiple products and stock-outs
may result in substitutions. In such cases, the firmmay end
up underestimating the demand for fast-selling products
which stock-out often, and overestimating the demand for
slow-selling products which do not sell out, but may have
higher sales due to substitution.

A number of research papers have highlighted the prob-
lem of demand censoring and its adverse effects not only
on demand forecasting (Wecker, 1978), but also on the
estimation of important consumer characteristics such as
price elasticity (Bruno & Vilcassim, 2008), as well as on
making important inventory decisions (Tan & Karabati,
2004). Researchers in the area of operations management
have proposed a number of advanced econometric meth-
ods for correcting this problem, but most have been too

7 See the report from Forrester, a leading research and advisory
firm: http://blogs.forrester.com/shar_vanboskirk/17-01-24-us_digital_
marketing_spend_will_near_120_billion_by_2021, accessed July 16,
2017.

complex for practical implementation. In recent years, re-
searchers have proposed various data-driven approaches
in order to counter the problem of demand censoring and
thus improve forecasting. These approaches are based on
the higher level of granularity in sales and inventory data,
and new forecasting models that can be applied to such
data. Modern Point-of-Sales systems have the ability to
capture detailed data on both the timings of sales and the
availability of various products in inventory at different
points in time. Combining this data allows the firm to see
sales as a function of the product availability over time,
thus enabling us to obtain a better picture of demand. In a
recent paper, Jain, Rudi, and Wang (2015) offered a simple
illustration of improvements in forecasting from the use
of such granular data. They show that firms can improve
their forecasting and inventory decisions significantly by
using the data on the timing of sales. They also show that,
in many cases, it is sufficient for the firm to capture only
the time at which a stock-out takes place. Using the timing
of stock-outs allows better estimates of actual sales to be
made, improving forecasts. Queenan, Ferguson, Higbie, and
Kapoor (2007) offer more practical applications of this idea
to the forecasting of demand in the context of revenue
management.

This idea of using more granular data on sales and
inventory over time has even stronger implications for
the development of multi-product demand forecasts. Most
firms worry about having both the right assortment and
the appropriate inventory for each of the products in the
assortment. Solving this problem requires a knowledge of
the demands for different products as a function of the
assortment offered — effectively, an understanding of cus-
tomers’ inherent demands for different products and their
willingness to substitute between them. The availability
of more granular data can lead to a great improvement
in the way in which sales data can be used for learning
about customers’ choices between multiple products in an
assortment. Using inventory data permits one to deduce
the availability of the product assortment over time, and
marrying this with the sales transaction data gives a more
complete picture of a customer’s choice process. Themulti-
product forecastingmethod proposed by Karabati, Tan, and
Öztürk (2009) uses this idea: in their proposed scheme,
the sales data are split into different time intervals, each
of which corresponds to the availability to customers of
a different product assortment. These disaggregated data
are then used to estimate the demand rates for individual
products, as well as the substitution probabilities between
them. More recent papers have applied this idea of using
granular sales data to different types of customer choice
models in an attempt to develop a better understanding of
the customer choice process; for example, Musalem, Oli-
vares, Bradlow, Terwiesch, and Corsten (2010) consider a
multinomial logit (MNL) choice model, van Ryzin and Vul-
cano (2014) consider amore generalized rank-based choice
model, and Chen, Mersereau, and Wang (2017) show how
granular sales data can improve pre-launch merchandise
testing significantly.

In addition to increasing the granularity of data over
time, the modern Point-of-Sales and data storage systems
also allow firms to observe the contents of a customer’s

http://blogs.forrester.com/shar_vanboskirk/17-01-24-us_digital_marketing_spend_will_near_120_billion_by_2021
http://blogs.forrester.com/shar_vanboskirk/17-01-24-us_digital_marketing_spend_will_near_120_billion_by_2021
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basket; in other words, which products were bought to-
gether and how often. In many contexts (for example gro-
cery retail), customers generally buy multiple products in
a single visit, and the availability (or not) of one product
may influence the purchase decisions of other products in
the customers’ baskets. Researchers inmarketing have rec-
ognized this in their work on the development of models
of customer choice (Chung & Rao, 2003; Hruschka, 2017;
Russell & Petersen, 2000), but the application of such anal-
yses to the forecasting of product-level demand remains an
open avenue for future research.

3.2. In-store data

Next, we consider other sources of in-store data related
to customer behavior. These are data related to customers’
entry into the store and subsequent interactions with vari-
ous store elements before making their purchase decision.

3.2.1. Traffic counter data
In recent years, it has become much easier for firms

to gather traffic data, i.e., information on how many cus-
tomers visited their stores at different times. First,many re-
tailers have ventured into electronic retailing, where such
data are a lot easier to collect and analyze. Second, elec-
tronic traffic counters have become more pervasive and
accurate. While many of the applications of traffic data re-
late to tactical decisions (e.g. store-level staffing decisions),
firms are beginning to realize the value of this informa-
tion for other operational decisions (out-of-store and in-
store promotions, salesperson training, store layout design
etc.). Traffic data inform the retailer as to how effective
their store front and other out-of-store promotions are in
attracting customers to step into their store. When com-
bined with sales records, the potential of this data grows
many-fold. By combining traffic data with sales data, a
firm can also learn about trends in conversion (i.e., what
fraction of visiting customers choose to purchase), which
in turn can inform it about the effectiveness of different
in-store elements in driving conversion. Research papers
on this subject (see for example Lam, Vandenbosch, &
Pearce, 1998; Mani, Kesavan, & Swaminathan, 2015 and
Perdikaki, Kesavan, & Swaminathan, 2012) have shown
how sales can be predicted as a function of traffic and
store staffing levels. These models can then be used not
only for the improved forecasting of aggregate sales (given
some information on future traffic), but also for optimizing
staffing levels. Another application of traffic data is offered
by Lam, Vandenbosch, Hulland, and Pearce (2001), who
show the usefulness of such data for evaluating the impacts
of different types of promotions.

There are several possible avenues for future research in
this area, especially relating to understanding the demand
at brick-and-mortar retailer stores. First, while
researchers have constructed models that relate sales to
traffic, it is not clear how much improvement in accuracy
can be achieved by incorporating traffic data. Second, the
existing research is also based on highly aggregate (store-
level) data, and does little to differentiate between differ-
ent types of customers entering the store or different types
of products being sold. The relationships between these

elements and product demand/sales should be explored in
future research. Third, the existing research streams are
based mainly on the number of customers entering the
store, with no attention being paid to either the amount of
time customers spend in the store or the number of people
in the store. It is well known that the number of people in a
store affects the purchase decision – crowds hinder prod-
uct browsing and access to sales persons, and increase the
‘friction’ in completing sales transactions. Future research
should consider these additional operational dimensions of
customer flow.

3.2.2. Path data
Traffic data offer information only on how many cus-

tomers enter the store. After entering the store, customers
engagewith various elements in the store, such as products
on shelves and sales personnel. The ways in which cus-
tomers go about interactingwith these store elements pro-
vide information about their decision making processes,
and hence, the demand. Traditionally, such data have been
difficult to gather; however, technologies such as RFID
tags, digital video capture, and nimble database solutions
have made collecting, storing, coding and accessing such
data in a brick-and-mortal retailing context easier. In the
context of electronic retailing, such data are available read-
ily, since store websites usually track each visitor’s digital
clickstream. Such data can be used to assess customer
intent, which can then be used for forecasting demand. For
example, an electronic retail store can use customer path
information to detect customer interest, and to position
inventory in (warehouse) locations closer to the customer
for fast delivery when such orders materialize.

Over the last decade, a substantial amount of research
has utilized path data collected using these novel meth-
ods and sources. The main focus of such papers has usu-
ally been on obtaining a better understanding of customer
behavior; specifically, the ways in which customers in-
teract with various elements on the physical or digital
store. For example, Hui, Bradlow, and Fader (2009) andHui,
Fader, and Bradlow (2009) use data collected using RFID
tags installed on shopping carts/baskets to verify behav-
ioral hypotheses on customers’ purchase processes. They
show that customers are more likely to make a purchase
when they spend a longer time shopping. In another ef-
fort, Lu, Musalem, Olivares, and Schilkrut (2013) measure
customers’ sensitivity to waiting in a line. Jain, Misra, and
Rudi (2016) use video data to quantify the impact of sales
assistance on purchase decisions. However, the use of data
from such sources for improving demand forecasting has
received only a limited amount of attention. Path data are
‘‘short-term", and typically are not suitable for planning
typical supply chain procurement or replenishment, ac-
tivities with lead times that can range from a few days
to several months. In practice, retailers need to combine
path data with data from other sources in order to predict
demand (say through econometricmodels). However, such
sophisticated and time-consuming tools may not be acces-
sible to smaller retailers. Thus, future work could focus on
the best way of integrating such data into existing easy-to-
employ forecasting methods.
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3.3. Internet/user-generated content

Last but not least, we consider the impact of data on
a customer’s behavior prior to a store visit. The key idea
here is that such customer activities are indicative of an
intent to purchase a given product, and can be used to
improve the forecasting process. Traditionally, such data
have been difficult to obtain, barring expensive market
surveys. However, the explosion of online activities over
the last decade, especially the emergence of ‘‘socialmedia’’,
and firms’ abilities track them, has changed this. Nowa-
days, firms have access to many tools that allow them not
only to see the latest trends, but also to shape them in
order to influence customer behavior. Most firmsmaintain
a presence on social media platforms such as Facebook and
Twitter, and can use them to interact with their customers
directly.

3.3.1. Google trends
Evenwithout an explicit social media presence, though,

there are technologies available today that can track cus-
tomer search behaviors, i.e., patterns of what customers
search for on the web, and how often they do it. There
is a growing stream of literature on the use of Google
Trends, a free tool available from Google, Inc., that tracks
customer search data. The trends are reported on a 1–100
scale, where a value of 100 indicates peak popularity of a
search term whereas 50 indicates that it is half of its peak
value. For example, the popularity of the search term ‘‘L. L.
Bean’’ on January 11, 2017, was at a value of 9; but when
President Trump tweeted ‘‘Buy L. L. Bean’’ on January 12,
the popularity of ‘‘L. L. Bean’’ surged to 100, its peak.

A growing stream of research is finding evidence that
the use of Google trends indexes (and those of competing
search engines like Baidu) reduces forecast errors, both in-
and out-of-sample. The premise is that smaller forecast
errors lead to better supply chain performance (see Boone,
Ganeshan, Hicks, & Sanders, 2017; Cui, Gallino, Moreno,
& Zhang, 2017). Researchers typically use traditional time
series forecasts, most often with some form of autoregres-
sive model as a baseline. They then include the search
index for specified search terms as a predictor variable
when constructing the trend-enhanced forecasting model.
The procedure for testing the value of trend variables
is to compare the out-of-sample forecast errors of these
two models using a rolling window forecast, most com-
monly with one-step-ahead forecasts. Existing research
has shown that Google trends can be used to improve the
forecasting of economic indicators such as unemployment
rates and benefit claims (Choi & Varian, 2009, 2012; Smith,
2016), GDP (Castle, Fawcett, & Hendry, 2009), and auto-
mobile, home and retail sales (Choi & Varian, 2009; Wu
& Brynjolfsson, 2015). The Google trends-enhanced eco-
nomic models typically have out-of-sample MAEs that are
anywhere from4% to 25% smaller than those of the baseline
models. Google trend-enhanced models are also common
in public health, often for tracking incidences or the spread
of disease outbreaks (for example, see Ginsberg et al., 2009,
for predicting flu outbreaks and Seifter, Schwarzwalder,
Geis, & Aucott, 2010, for tracking Lyme disease).

Trend data have also been shown to be valuable in
industries where having real-time data is critical. In finan-
cial markets, search query data are used for measuring
retail investor attention (Bank, Larch, & Peter, 2011; Da,
Engelberg, & Gao, 2011) and market volatility (Dimpfl &
Jank, 2016), and for predicting earnings (Da, Engelberg, &
Gao, 2014; Drake, Roulstone, & Thornock, 2012). Trend-
enhanced models have been used in estimating customer
‘‘traffic’’, for example in tourism for predicting arrivals
(Bangwayo-Skeete & Skeete, 2015; Choi & Varian, 2009),
hotel bookings (Pan, ChenguangWu, & Song, 2012; Rivera,
2016), and movie admissions (Hand & Judge, 2012). The
MAPE improvements in many of these industry-specific
models are between 10% and 40%, raising the possibility
that trend data can enhance prediction.

However, research on the application of Google trends
data to the prediction of product sales is very limited.
The few studies that have tackled this challenge have
focused on the forecasting of aggregate-level sales (Choi
& Varian, 2009; Fantazzini & Toktamysova, 2015; Nun-
nari & Nunnari, 2017; Schaer, Kourentzes, & Fildes, 2019),
and have shown modest improvements in MAPE (2%–
15%) as a result of using Google trends data for enhanc-
ing forecasting. We found two studies that investigated
whether Google trends data can improve SKU-level fore-
casts. Through a case study of a food retailer, Boone, Gane-
shan, and Hicks (2015) show that Google Trends improve
in-sample performances by 6%–8%. Later, using five years of
data over five SKUs in multiple categories from a specialty
food and cookware retailer, (Boone et al., 2017) show out-
of-sampleMAPE improvements of 2%–8%, depending on the
SKU category.8

While there is considerable enthusiasm regarding the
potential for Google trends data to improve forecasting,
a lot of work is needed in order to realize this poten-
tial. Following the example of Boone et al. (2017), there
need to be more studies testing the out-of-sample fore-
cast improvements that can result from the use of search
data. Second, there is a need for systematic protocols for
generating relevant search terms for a product. There are
potentially thousands of terms thatmay be correlatedwith
target variables — howdoes one choosewhich ones to use?
In existing studies, researchers have relied on manager
intuition (Boone et al., 2017) or used part of a portfolio of
terms that are likely to be related to the product. How-
ever, these are not scalable for firms that sell thousands
of products. Third, Google only indexes terms that meet
a certain threshold of traffic, meaning that index values
for relevant search terms may simply not be available. In
such situations, the researcher has to rely on proxy terms,
which adds another source of uncertainty. Fourth, the way
inwhichGoogle or other search engines calculate the index
is a black box. According to Google, the index is based on
sampleddata,meaning that they are not entirely consistent
over time, calling into question the long-term reliability of
the use of trend variables. Fifth, search termsmay varywith
the product lifecycle or with time even for the same target
variables; future studies can perhaps address and gain

8 While only five SKUswere reported, the authors found similar results
for over 15 SKUs.
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insights from the ways in which changes in search terms
impact demand forecasting. Finally, as was also pointed
out by Schaer et al. (2019), such models perform poorly
in forecasting demand over the longer time frames (even
a few days) that are required for supply chain planning.
Since Google trends use contemporaneous terms, dynamic
forecasting quickly gets very noisy, even over only a few
days, which limits these models to very short forecasting
horizons. Addressing the ways in which these models can
be used strategically with the sales and operations plan-
ning process is another a viable area for future research.

3.3.2. Social media
There is a growing stream of literature on ways of har-

nessing the data created on social media (Facebook, Twit-
ter, YouTube, etc.) in order to provide forecasting insights.
The premise is that as more people share their experiences
on these platforms, often in real time, it can not only inform
the consumers of this data, but also shape how they make
decisions. From a technical perspective, the primary focus
of most of the academic studies in this arena has been on
establishing how such social media entries can be captured
and processed into quantitative measures or indices (that
capture the ‘‘mood" or ‘‘sentiment" of these posts). There
is a wide range of views as to how these indices should
be constructed, including ‘‘volume" measures such as the
number of posts,9 the fraction of positive posts, who is
posting, the posters’ ratings, the number of upvotes, etc.;
and ‘‘valence" measures, which relate to the context and
quality of posts, such as the subject of the post, the ‘‘bag of
words" that are used in the post, the credibility and influ-
ence of the poster, the context inwhich the post originated,
etc. (see Goh et al., 2013, for a review). The aim is to capture
themood related to the topic; or, in amarketing campaign,
to determine how product information can be diffused
effectively using social media. For example, a potential
index for stock market predictions could be the number
of positive tweets about Dow or Nasdaq. The creation of
these indices is in itself a vibrant area of research. While
reviewing such indices is outside the scope of this paper, it
provides a rich area of study for the forecasting community.
The second step in assessing user-generated content is
to augment forecasting models with these social-media
measures or indices in order to test whether they improve
the forecasts. In addition to linear models, a significant
number of research studies that use social media use non-
linear models, typically machine learning methods (with
support vector machines and neural networks being those
most commonly used).

Twitter data have been used widely for predicting flu
outbreaks (Broniatowski, Paul, & Dredze, 2013; Lamb, Paul,
& Dredze, 2013; Lampos, De Bie, & Cristianini, 2010), stock
prices (Bollen, Mao, & Zeng, 2011; Rao & Srivastava, 2012;
Zhang, Fuehres, & Gloor, 2011), box office revenue (Liu,
Ding, Chen, Chen, & Guo, 2016; Mishne, Glance, et al.,
2006; Sanguinet, 2016), and TV ratings (Wakamiya, Lee,
& Sumiya, 2011). Most studies have shown that forecast

9 We use the word ‘‘post" in its very generic form. This could include a
tweet or a retweet, or a Facebook entry or a like, or a comment on a public
forum, etc.

errors can be improved by adding social media informa-
tion, but we have not found any studies that investigate
how social media platforms impact SKU-level forecasts.
Using data from an online retailer, Cui et al. (2017) show
how the number and relevance of Facebook entries reduce
the out-of-sample MAPEs of aggregate daily sales for an
online fashion retailer by 7%–23%. However, they concede
that their forecasts hold only for short timeframes. In a
controlled study with a premium ice cream brand, Kumar
et al. (2013) were able to show that a marketing campaign
that is constructed carefully to make use of Facebook can
grow sales. However, their study focused on how to spread
the ‘‘word of mouth" about the product, not specifically on
forecasting SKU demand.

While models that incorporate user-generated content
showpromise for generating sales and revenue, forecasting
models specifically have a number of practical limitations
in regard to supply chain planning. First, the forecast hori-
zons of models that use such data are often short. In a sup-
ply chain context, where lead times tend to be longer than
just a few days, short-term search or social media data in-
formation cannot be used for demand and inventory plan-
ning. However, these models can be useful for the staging
of inventory as it is consumed. For example, as a trend or a
‘buzz’ is detected for a certain SKU in a certain area, contin-
gency plans can bemade tomove the inventory to that area
in order to maximize profits. Second, such models can also
be used to make replenishment decisions for consumable
goods. For example, as the interest in a particular SKU (as
opposed to actual inventory) grows, actions to replenish
can be taken earlier than normal in anticipation of that
demand. In our opinion, these Internet search and social
media variables have their highest impact on short-term
‘yield’ management scenarios. Connected stores can be fed
digital signage based on current sales and trends. These can
work in conjunction with beacons and customer devices
to identify customers and offer them promotions such as
coupons to stimulate sales of selected SKUs or trending
items. Flexible digital price tags can change based on the
evolution of these contemporaneous Internet variables,
giving customers a price break based on their browsing and
buying patterns. Customers can also be given the choice of
procuring products through other channels, such as other
store locations by means of eCommerce, for products that
are unavailable in the store they visit. However,making use
of contemporaneous Internet and user-generated content
depends on how well these variables are integrated into
the sales and operations planning and execution processes.

4. Organizational challenges of big data forecasting

4.1. Integrating big data into sales and operations processes

On a strategic level, every firm has to decide whether
and how much to incorporate big data technologies into
their planning process. This depends on the relative ben-
efits the firm can potentially accrue against the cost of
collecting and analyzing such data. Our intent is not to
address this strategic question of whether and how much
to integrate big data into organizational processes; rather,
we want to highlight the changing supply chain landscape
and the challenges of integrating big data specifically for
demand and supply chain planning.
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4.1.1. Capturing big data and connecting it to traditional SOP
processes

Big data brings with it the potential to improve product
forecasts and give interesting insights into customer be-
haviors. However, these potential benefits comewith enor-
mous practical challenges for demand planners. First, the
sheer volume of data can be overwhelming. For example,
Walmart collects more than 2.5 petabytes (1 petabyte = 1
million gigabytes) of data every hour from onemillion cus-
tomer transactions.10 However, only about 0.5% of all data
collected is analyzed.11 Thus, a practical question is, what
data should be stored, and for how long? Second, Feng and
Shanthikumar (2018) point out that, while ‘‘theoretically
more information leads to better forecasts, the challenge,
however, comes from dealing with the increased number
of variables and their ambiguous relationships.’’ Since big
datasets, especially those used in forecasting, tend to be
sparse and non-repetitive, they posit that semi- or non-
parametric methods such as machine learning (see for ex-
ample Cui et al., 2017) are better suited for analyzing them
than traditional time series forecasting methods. Demand
planners need to adjust so as to accommodate a wider
range of methodologies into the planning process.

4.1.2. From human judgement to data-driven decisions
Studies of industry practices repeatedly show that judg-

mental forecasts are the norm and are based on ‘‘gut feel-
ings.’’ Here, statistical forecasts are adjusted to account
for numerous factors that demand planners perceive as
being difficult to measure, including promotional activ-
ities, seasonal activities, demand risk, demand and sup-
ply chain disruptions (see for example Fildes & Goodwin,
2007). While human judgement has the potential to im-
prove forecasts, experts often introduce their own biases
in the process (see for example Hypotheses H4 and H5
of Fildes, Goodwin, Lawrence, & Nikolopoulos, 2009). Of-
ten, such judgmental forecasts have an adverse impact on
the forecast accuracy, since they weight their contribution
disproportionately (Franses & Legerstee, 2010). At least in
theory, newly available data have the potential to reduce
the negative effects of ‘‘adjustments’’ to the forecast (see
the prototypical models of Feng & Shanthikumar, 2018),
and there have been efforts to integrate such new data
streams (Sagaert, Aghezzaf, Kourentzes, & Desmet, 2018)
into forecasts in a systemic manner. However, significant
practical challenges remain. First, recent surveys (Weller &
Crone, 2012) indicate that such new data streams may not
be available readily, or be used by a majority of demand
planners. Second, significant hardware, software, and an-
alytical support is required in order to integrate the data
into the ERP systems that planners typically use. Third, a
significant learning curve is required in order to interpret
the results from the newer machine learning algorithms.
Another area of research for the forecasting community is
to investigate whether big data streams can substitute for
expert judgement. While we do not believe that big data
can ever supplant expert opinion, it can alleviate some of
the issues with judgmental forecasts.

10 see https://www.dezyre.com/article/how-big-data-analysis-
helped-increase-walmarts-sales-turnover/109.
11 https://www.technologyreview.com/s/514346/the-data-made-me-
do-it/.

4.1.3. Changing customer experiences
Thewidespread use of connected devices such as smart-

phones or wearable technologies are changing the in-store
customer experience. Beacons in stores (or online) can
detect a customer entering a store, thus providing signif-
icant opportunities for customer engagement, gathering
data and making links to historical buying patterns. As a
result, demand is not just forecast, but can be influenced
and modified directly, as consumer buying can now be
directed (see ; Cohen, 2018; Feng & Shanthikumar, 2018;
and the various referenceswithin). Content such as product
information, pricing, and promotions such as e-coupons
can be personalized to the customer (and sent to their
phones) based on their past browsing experience (Gane-
shan, 2014). Products or substitutes can be suggested, and
in some cases, customers can be led to product locations.
This is an area of active research in the marketing and
operationsmanagement communities (see for example Ca-
chon, Daniels, & Lobel, 2017; Chen, Ma, Simchi-Levi, & Xin,
2016, for pricing; van Heerde & Neslin, 2017, for promo-
tions; Bobadilla, Ortega, Hernando, & Gutiérrez, 2013, for
recommendation systems; and Lau, Zhang, & Xu, 2017, for
sentiment analysis).

From a customer’s perspective, smart devices are help-
ful for researching a product (for example, looking for
reviews), looking up a competitor’s price or even ordering a
competing product right from the store. In many ways, the
customer experience has become a very personalized one.
Demand planners, and indeed the research community,
need to address this apparent contradiction of disaggregate
planning for the unique customer at significantly shorter
time horizons while at the same time planning for aggre-
gate needs over the longer-term. Second, customers are
now demanding the flexibility of being able to order the
product via multiple channels (the ‘‘omni-channel’’ expe-
rience), and want product delivery (and potential returns)
in a wide variety of locations, including their home, stores,
or third-party locations. While big data technologies have
enabled and enhanced the planning between channels, it
still requires a significant amount of coordination between
channels (eCommerce, retail, etc.), in terms not only of
tactical planning, but also of shared strategic goals, perfor-
mancemeasures, and incentives. Indeed, forecasting omni-
channel demand remains a viable area of enquiry.

4.1.4. Integrating the connected supply chain
Big data technologies have enabled the echelons of the

supply chain to be ‘‘connected’’ and to ‘‘communicate’’
with one another, creating the ‘‘intelligent’’ supply chain
Sanders (2016). At the customer level, there has been
a profusion of ‘‘connected" devices. This has enabled a
more active engagementwith the customer. Targetedmes-
sages/promotions can reach the customer’s living room;
consumption can be tracked to actuate replenishment;
problems can be diagnosed online; and finally, specialized
products and services can be tailored to the customer.
Such connectivity provides a treasure trove of data that
the demand planner can potentially use to capture the cus-
tomers’ intent, to shape demand, and to increase loyalty.
It can also provide a greater supply chain responsiveness
to forecast errors. However, in our experience, demand

https://www.dezyre.com/article/how-big-data-analysis-helped-increase-walmarts-sales-turnover/109
https://www.dezyre.com/article/how-big-data-analysis-helped-increase-walmarts-sales-turnover/109
https://www.technologyreview.com/s/514346/the-data-made-me-do-it/
https://www.technologyreview.com/s/514346/the-data-made-me-do-it/
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planners seldom use this data for the S & OP process. The
integration of customer engagement provides a viable field
of enquiry for the forecasting community.

Initiatives on the supply side, such as collaborative plan-
ning, forecasting and replenishment (CPFR) and efficient
customer response (ECR), are setting up processes where
demand planning and replenishment is done in collabo-
ration with key suppliers. Events such as store openings,
promotions, and supply shortages are shared between
trading partners, improving visibility and forecast accu-
racy. In many cases, firms also extend this visibility to the
customer (Boone & Ganeshan, 2008; Panahifar, Heavey,
Byrne, & Fazlollahtabar, 2015), especially in regard to in-
ventory availability. RFID tags help to improve inventory
tracking and maintain consistent service levels (Bertolini,
Bottani, Rizzi, & Volpi, 2010). Emerging technologies such
as Blockchains promise secure, accurate transactions and
easy reporting. They also make ‘‘track and trace" in the
supply chain easier, providing the demand planner with
valuable information on planning replenishment and
order-promise dates. Finally, instrumented supply chains
have improved yield management (for example by using
dynamic price tags) and supply chain efficiency. The chal-
lenge for demand planners is how these new technologies
should be integrated into the planning process. For exam-
ple, should Blockchain technology be rolled out to all prod-
ucts? Should they embrace smart contracts? How should
they establish the chain of command? Answering these
questions successfully will enable an improved visibility
and potentially better forecasts.

4.2. Privacy, bias, and discrimination

Connected devices and sensors are constantly collecting
significant amounts of data on customers. Often, such data
(such as mobile phone pings, for example) do not have any
specific purpose. In addition, the data are not anonymous:
often the identity of the consumer is linked to the behavior.
Since the forecasting of consumer behavior often warrants
the use of these private datasets, it raises significant issues
of privacy and data integrity, as well as bias and discrim-
ination, as the ensuing discussion will show. These issues
are increasing in prominence,12 and the forecasting com-
munity needs to be actively engaged in finding solutions.

The Identity Theft Resource Center estimates13 that
there have been 8190 data breaches since 2005, with over
one billion customer records having been exposed to theft.
These breaches can have disastrous consequences, both
for the firms whose data were hacked and potentially for
the consumers whose identities were exposed.14 In 2017,
the largest breach was Equifax, a credit monitoring agency
in the US. Over 140 million US and half a million British

12 Not only are companies, especially retailers, reacting to many
breaches and the algorithmic bias discussed in this section, policy mak-
ers are also taking steps to legislate against privacy- and algorithmic-
injustice. See: https://www.cnet.com/news/elizabeth-warren-equifax-
mark-warner-credit-reporting-agencies-data-breach-bill-fines/.
13 https://www.idtheftcenter.org/Data-Breaches/data-breaches.
14 See for example the story of Drew Armstrong, whose iden-
tity was stolen: https://www.bloomberg.com/news/articles/2017-09-13/
my-three-years-in-identity-theft-hell.

customer records — names, addresses, and social security
numbers — were hacked in this breach. At best, the cost
to the consumer is the cost of protecting their identity; at
worst, it is the cost of reversing the consequences of their
identity being stolen.

Big data are also not immune to the typical problems
faced by traditional datasets, such as that of bias and rep-
resentation in datasets. The device or sensor collecting the
data can introduce bias into the data. For example, the
City of Boston used the ‘‘Street Bump’’ App15 to collect
data from citizens on potholes. The user’s smartphone’s
accelerometer would record ‘‘bumps’’ and their locations
as they drove along on the road, a potential sign of a
pothole that the city could then fix. The app reported
disproportionate numbers of potholes in wealthier parts
of town where more residents owned smartphones and
were digitally engaged. Thus, even such well-intentioned
programs have the ability to have a negative impact on
members of our society.

Another famous example is the overestimation of flu
incidence in algorithms that used Google Trends search
terms, due to people beginning searching for flu symptoms
when they heard of flu incidences on the news. The CDC
datawere field-based and tended to estimate flu incidences
better. These are examples of so-called ‘‘big data hubris’’,
the implicit assumption that big data collected via auto-
mated or volunteeredmethods can replace traditional data
collection and analysis (Lazer, Kennedy, King, & Vespig-
nani, 2014).

4.2.1. Algorithmic ethics and injustice
For a recent job advertisement in finance located in

Washington DC, Verizon, a US telecom company, targeted
their promotion at ‘‘the Facebook feeds of users 25 to
36 years old who lived in the nation’s capital, or had re-
cently visited there, and had demonstrated an interest in
finance.’’16 Such targeted ads raise questions of fairness
to older workers, and many critics suggested that the ad
violated the federal Age Discrimination in Employment Act
of 1967. Such biases by algorithms based on demographic
features (race17 and disability18 are also cited commonly)
have come to be known as ‘‘machine bias’’. O’Neil’s (2017)
best-selling book Weapons of Math Destruction provides
multiple examples of such algorithmic injustice — poor
evaluation procedures for high school teachers, race, gen-
der and economic biases in product offerings, etc. — and
these algorithmic decisions often affect the most vulnera-
ble populations.

15 John Podesta, President Barack Obama’s senior counselor, references
this bias in an interview. See https://www.reuters.com/article/us-usa-
obama-privacy/white-house-looks-at-how-big-data-can-discriminate-
idUSBREA3Q00M20140427.
16 https://www.propublica.org/article/facebook-ads-age-
discrimination-targeting.
17 Propublica reported that Facebook was allowing housing advertisers
to exclude viewers by race. See: https://www.propublica.org/article/
facebook-advertising-discrimination-housing-race-sex-national-origin.
Amazon also came under criticism when it rolled out Amazon same
day deliveries in cities, as their algorithms inadvertently excluded black
neighborhoods.
18 O’Neil (2017) describes how job applicants were weeded out based
on mental health.
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Several research streams tackle the issue of machine
bias (see for example Calders & Verwer, 2010). These are
typically statistical methods that indicate potential biases
among customer attributes.

As the use of big data streams grows increasingly
widespread in the forecasting research community, we
expect this to become a important research area. The fore-
casting research community, with its expertise in statis-
tical methods, can contribute significantly to (a) fraud
detection (i.e., detecting outliers in data streams) in big
data; (b) determining how ‘‘clean’’19 internet and user-
generated content can be used in forecasting models; and
(c) establishing how big data or machine algorithms can
be bias-free (for example, generating ‘‘bias" scores for
forecasting models that predict customer behavior).

5. Summary and conclusions

Our intent in this paper has been to provide an overview
of the way in which the forecasting of sales in the supply
chain could be enhanced by customer analytics based on
big data and associated technologies. We have focused
rather broadly on three aspects of the purchase decision:
the research phase, the store experience, and finally the
sales transaction. From this perspective, we have reviewed
the many ways in which big data can enhance aggregate
forecasts. First, we show how the granular data that are
now available through POS systems can help to overcome
demand censuring and provide a holistic view encompass-
ing amulti-product perspective. Second, in-store technolo-
gies can be used to assess traffic and customer purchasing
behaviors, which can inform aggregate sales forecasts. Fi-
nally, we show how researchers have used user-generated
data from Internet searches and social media to enhance
forecasting models.

While the use of big data shows promise, it also intro-
duces significant challenges. First, the size and unstruc-
tured content of these enormous data sets can be daunting.
Second, the data are sparse andnon-repetitive and requires
multiple methodologies for forecasting, which slows their
widespread acceptance. Finally, customer experiences and
supply chains are changing, making big data technologies
difficult to integrate into conventional SOP processes. We
concur with the assessment of the Associate Editor who
reviewed this paper: ‘‘As yet, in demand forecasting we
would see ‘big data’ mostly as potential with gains yet to
be delivered’’.

Firms that embrace big data technologies must also
address three key related management issues: privacy,
security, and governance. First, since amultitude of sensors
are used to gather information about customer browsing
and purchase behaviors, it is imperative that firms ad-
dress and articulate a clear privacy policy. The growth of
technologies is outpacing privacy laws in many jurisdic-
tions (Machanavajjhala & Reiter, 2012), which adds the
challenge that firms potentially may have to deal with
privacy laws in different geographical locations. Second,
these large datasets (especially if they are distributed) pose

19 By this we mean that the content being captured correlates with the
signal being measured.

a security risk (Lu, Zhu, Liu, Liu, & Shao, 2014). Any failure
to keep customer data, especially sensitive data (such as
social security and credit card numbers) secure can be il-
legal and open to relevant government oversight agencies.
Finally, firms that make use of big data also need a clear
big data strategy in order to keep their decisions free of
bias. For example, a multidisciplinary group of researchers
known as the Fairness, Accountability and Transparency in
Machine Learning (FAT/ML) community lay out a set of five
principles that can potentially alleviate issues of bias: re-
sponsibility, explainability, accuracy, auditability, and fair-
ness. The aim of these principles is to ‘‘help developers
and product managers design and implement algorithmic
systems in publicly accountable ways. Accountability in
this context includes an obligation to report, explain, or
justify algorithmic decision-making as well asmitigate any
negative social impacts or potential harms’’.20

A clearly articulated governance structure will lay out
what data are collected where and fromwhom; the way in
which these data and the accompanying decisions’ quality
are validated; and how this data can be leveraged as an
organizational asset (see for example Otto, 2011, Hashem
et al., 2015).

Despite the challenges, we see the next decade as being
the golden age of forecasting. We see a future where de-
mand planners can make use of large and varied datasets
in real-time; can provide a clearer picture of customer
behavior; and can generate accurate forecasts thatwill help
not only to improve the efficiency of their supply chains but
also to enhance their revenues.We hope that our optimism
is shared by the forecasting community — we are looking
forward to the increased interest in big data technologies
and the development of newmethods and tools for turning
such data into more accurate forecasts for use in making
actionable operational decisions.
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